Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli
نویسنده
چکیده
Xanthine oxidase (XO) has been recognized as an important host defense enzyme for decades. In our recent study in Infection and Immunity, we found that enteropathogenic and Shiga-toxigenic E. coli (EPEC and STEC) were far more resistant to killing by the XO pathway than laboratory E. coli strains used in the past. Although XO plus hypoxanthine substrate rarely generated enough H 2O 2 to kill EPEC and STEC, the pathogens were able to sense the H2O2 and react to it with an increase in expression of virulence factors, most notably Shiga toxin (Stx). H 2O 2 produced by XO also triggered a chloride secretory response in T84 cell monolayers studied in the Ussing chamber. Adding exogenous XO plus its substrate in vivo did not decrease the number of STEC bacteria recovered from ligated intestinal loops, but instead appeared to worsen the infection and increased the amount of Stx2 toxin produced. XO plus hypoxanthine also increases the ability of Stx2 to translocate across intestinal monolayers. With regard to EPEC and STEC, the role of XO appears more complex and subtle than what has been reported in the past, since XO also plays a role in host-pathogen signaling, in regulating virulence in pathogens, in Stx production and in toxin translocation. Uric acid produced by XO may also be in itself an immune modulator in the intestinal tract.
منابع مشابه
Complete Annotated Genome Sequences of Two Shiga Toxin-Producing Escherichia coli Strains and One Atypical Enteropathogenic E. coli Strain, Isolated from Naturally Colonized Cattle of German Origin
Shiga toxin-producing Escherichia coli (STEC) strains are important zoonotic enteric pathogens with the main reservoir in cattle. Here, we present the genomes of two STEC strains and one atypical enteropathogenic E. coli strain from cattle origin, obtained during a longitudinal study in German cattle herds.
متن کاملVirulence inhibition by zinc in shiga-toxigenic Escherichia coli.
Previously, our laboratories reported that zinc inhibited expression of several important virulence factors in enteropathogenic Escherichia coli (EPEC) and reduced EPEC-induced intestinal damage in vivo. Since EPEC is genetically related to Shiga-toxigenic E. coli (STEC), we wondered whether the beneficial effects of zinc extended to STEC as well. Treatment options for STEC infection are very l...
متن کاملPhage biocontrol of enteropathogenic and shiga toxin-producing Escherichia coli in meat products
Ten bacteriophages were isolated from faeces and their lytic effects assayed on 103 pathogenic and non-pathogenic Enterobacteriaceae. Two phages (DT1 and DT6) were selected based on their host ranges, and their lytic effects on pathogenic E. coli strains inoculated on pieces of beef were determined. We evaluated the reductions of viable cells of Escherichia coli O157:H7 and non-O157 Shiga toxig...
متن کاملIn vitro and in vivo model systems for studying enteropathogenic Escherichia coli infections.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) belong to a group of bacteria known as attaching and effacing (A/E) pathogens that cause disease by adhering to the lumenal surfaces of their host's intestinal epithelium. EPEC and EHEC are major causes of infectious diarrhea that result in significant childhood morbidity and mortality worldwide. Recent advances in in...
متن کاملDetection and Molecular Characterization of Sorbitol Negative Shiga Toxigenic Escherichia Coli in Chicken from Northwest of Iran
Shiga toxin-producing Escherichia coli (STEC) are food-borne pathogens primarily associated with the consumption of contaminated ground beef and are an important food safety concern worldwide. STEC has been found to produce a family of related cytotoxins known as Shiga toxins (Stxs). Shiga toxins have been classified into two major classes, Stx1 and Stx2. A single strains of STEC can produce St...
متن کامل